当前位置:天才代写 > tutorial > C语言/C++ 教程 > GPGPU OpenCL Reduction操纵如何与group同步

GPGPU OpenCL Reduction操纵如何与group同步

2017-11-02 08:00 星期四 所属: C语言/C++ 教程 浏览:715

副标题#e#

Reduction操纵:规约操纵就是由多个数生成一个数,如求最大值、最小值、向量点积、求和等操纵,都属于这一类操纵。

有大量数据的环境下,利用GPU举办任务并行与数据并行,可以收到可好的结果。

group同步:OpenCL只提供了事情组内的各线程之间的同步机制,并没有提供所有线程的同步。提供组内item-work同步的要领:

void barrier (cl_mem_fence_flags flags)

参数说明:cl_mem_fence_flags 可以取CLK_LOCAL_MEM_FENCE、CLK_GLOBAL_MEM_FENCE

函数说明:(1)一个work-group中所有work-item碰着barrier要领,都要期待其他work-item也达到该语句,才气执行后头的措施;

(2)还可以组内的work-item对local or global memory的顺序读写操纵。

如下图中每个大框暗示任务并行、每个group线程;框中的计较是数据并行、每个item-work线程:

GPGPU OpenCL Reduction哄骗如何与group同步

作为操练,给出个完整的利用OpenCL计较整数序列求和,在数据并行中利用Local Memory 加快,group组内并行同步利用CLK_LOCAL_MEM_FENCE。

措施实例(整数序列求和):

1.核函数(Own_Reduction_Kernels.cl):

__kernel
void
reduce(__global uint4* input, __global uint4* output, int NUM)
{    
    NUM = NUM / 4;    //每四个数为一个整体uint4。
    unsigned int tid = get_local_id(0);
    unsigned int localSize = get_local_size(0);
    unsigned int globalSize = get_global_size(0);
    
    uint4 res=(uint4){0,0,0,0};
    __local uint4 resArray[64];
    
        
    unsigned int i = get_global_id(0);
    while(i < NUM)
    {
        res+=input[i];
        i+=globalSize;
    }
    resArray[tid]=res;    //将每个work-item计较功效生存到对应__local memory中
    barrier(CLK_LOCAL_MEM_FENCE);
    
    // do reduction in shared mem
    for(unsigned int s = localSize >> 1; s > 0; s >>= 1) 
    {
        if(tid < s) 
        {
            resArray[tid] += resArray[tid + s];
        }
        barrier(CLK_LOCAL_MEM_FENCE);
    }
    
    // write result for this block to global mem
    if(tid == 0) 
        output[get_group_id(0)] = resArray[0];
}


#p#副标题#e#

2.tool.h 、tool.cpp

见:http://www.cnblogs.com/xudong-bupt/p/3582780.html

3.Reduction.cpp

#include <CL/cl.h>
#include "tool.h"
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <string>
#include <fstream>
using namespace std;
    
int isVerify(int NUM,int groupNUM,int *res)    //校验功效
{
       int sum1 = (NUM+1)*NUM/2;
    int sum2 = 0;
    for(int i = 0;i < groupNUM*4; i++)
        sum2 += res[i];
    if(sum1 == sum2)
        return 0;
    return -1;
}
    
void isStatusOK(cl_int status)    //判定状态码
{
    if(status == CL_SUCCESS)
        cout<<"RIGHT"<<endl;
    else
        cout<<"ERROR"<<endl;
}
    
int main(int argc, char* argv[])
{
    cl_int    status;
    /**Step 1: Getting platforms and choose an available one(first).*/
    cl_platform_id platform;
    getPlatform(platform);
    
    /**Step 2:Query the platform and choose the first GPU device if has one.*/
    cl_device_id *devices=getCl_device_id(platform);
    
    /**Step 3: Create context.*/
    cl_context context = clCreateContext(NULL,1, devices,NULL,NULL,NULL);
    
    /**Step 4: Creating command queue associate with the context.*/
    cl_command_queue commandQueue = clCreateCommandQueue(context, devices[0], 0, NULL);
    
    /**Step 5: Create program object */
    const char *filename = "Own_Reduction_Kernels.cl";
    string sourceStr;
    status = convertToString(filename, sourceStr);
    const char *source = sourceStr.c_str();
    size_t sourceSize[] = {strlen(source)};
    cl_program program = clCreateProgramWithSource(context, 1, &source, sourceSize, NULL);
    
    /**Step 6: Build program. */
    status=clBuildProgram(program, 1,devices,NULL,NULL,NULL);
    
    /**Step 7: Initial input,output for the host and create memory objects for the kernel*/
    int NUM=25600;    //6400*4
    size_t global_work_size[1] = {640};  ///
    size_t local_work_size[1]={64};    ///256 PE
    size_t groupNUM=global_work_size[0]/local_work_size[0];
    int* input = new int[NUM];
    for(int i=0;i<NUM;i++)
        input[i]=i+1;
    int* output = new int[(global_work_size[0]/local_work_size[0])*4];
    
    cl_mem inputBuffer = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, (NUM) * sizeof(int),(void *) input, NULL);
    cl_mem outputBuffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY , groupNUM*4* sizeof(int), NULL, NULL);
    
    /**Step 8: Create kernel object */
    cl_kernel kernel = clCreateKernel(program,"reduce", NULL);
    
    /**Step 9: Sets Kernel arguments.*/
    status = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&inputBuffer);
    status = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&outputBuffer);
    status = clSetKernelArg(kernel, 2, sizeof(int), &NUM);
    
    /**Step 10: Running the kernel.*/
    cl_event enentPoint;
    status = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, global_work_size, local_work_size, 0, NULL, &enentPoint);
    clWaitForEvents(1,&enentPoint); ///wait
    clReleaseEvent(enentPoint);
    isStatusOK(status);
                
    /**Step 11: Read the cout put back to host memory.*/
    status = clEnqueueReadBuffer(commandQueue, outputBuffer, CL_TRUE, 0,groupNUM*4 * sizeof(int), output, 0, NULL, NULL);
    isStatusOK(status);
    if(isVerify(NUM, groupNUM ,output) == 0)
        cout<<"The result is right!!!"<<endl;
    else
        cout<<"The result is wrong!!!"<<endl;
    
    /**Step 12: Clean the resources.*/
    status = clReleaseKernel(kernel);//*Release kernel.
    status = clReleaseProgram(program);    //Release the program object.
    status = clReleaseMemObject(inputBuffer);//Release mem object.
    status = clReleaseMemObject(outputBuffer);
    status = clReleaseCommandQueue(commandQueue);//Release  Command queue.
    status = clReleaseContext(context);//Release context.
    
    free(input);
    free(output);
    free(devices);
    return 0;
}

作者:cnblogs 旭东的博客

 

    关键字:

天才代写-代写联系方式