当前位置:天才代写 > 数学代写代考,北美/加拿大/英国靠谱的数学作业代写机构 > 澳洲数学代考推荐 Final考试代写

澳洲数学代考推荐 Final考试代写

2021-12-01 12:18 星期三 所属: 数学代写代考,北美/加拿大/英国靠谱的数学作业代写机构 浏览:527

澳洲数学代考推荐

 Math 307, Final

April 29, 2014 12.00-2.30pm

澳洲数学代考推荐 Showall your  Answers without any explanation or without the correct accompanying work could receive no credit, even if they are correct.

Instructor:  澳洲数学代考推荐

Instructions:

  1. No notes, books or calculators are allowed. A MATLAB/Octave formula sheet is provided.
  2. Read the questions carefully and make sure you provide all the information that is asked for in the question.
  3. Showall your  Answers without any explanation or without the correct accompanying work could receive no credit, even if they are correct.
  4. Answer the questions in the space provided. Continue on the back of the page if necessary.
Question Mark Maximum
1 20
2 13
3 16
4 10
5 澳洲数学代考推荐 14
6 12
7 15
Total 100

1.Consider the following types of matrices (all assumed to besquare):  澳洲数学代考推荐

(A)Matrices with a basis ofeigenvectors

(B)Matrices with distincteigenvalues

(C)Matrices with repeatedeigenvalues

(D)Hermitianmatrices

(E)Non-zero orthogonal projectionmatrices

(F)Matrices of the form    with a ≠ 0

(a)Which types are alwaysdiagonalizable?

(A) □, (B) □, (C) □ , (D) □ , (E) □ , (F) □

(b)Which types are sometimes, but not alwaysdiagonalizable?

(A) □, (B) □, (C) □ , (D) □ , (E) □ , (F) □

(c)Whichtypes always have an orthonormal basis of eigenvectors?

(A) □, (B) □, (C) □ , (D) □ , (E) □ , (F) □

(d)Whichtypes always have an eigenvalue equal to 1?

(A) □, (B) □, (C) □ , (D) □ , (E) □ , (F) □

(e)Everymatrix of type (A) is always also of type:

(A) □, (B) □, (C) □ , (D) □ , (E) □ , (F) □

(f)Everymatrix of type (B) is always also of type:    澳洲数学代考推荐

(A) □, (B) □, (C) □ , (D) □ , (E) □ , (F) □

(g)Everymatrix of type (C) is always also of type:

A) □, (B) □, (C) □ , (D) □ , (E) □ , (F) □

(h)Everymatrix of type (D) is always also of type:

A) □, (B) □, (C) □ , (D) □ , (E) □ , (F) □

(i)Everymatrix of type (E) is always also of type:

A) □, (B) □, (C) □ , (D) □ , (E) □ , (F) □

(j) Every matrix of type (F) is always also of type:

A) □, (B) □, (C) □ , (D) □ , (E) □ , (F) □

2.Wewish to interpolate the points (x1, y1), (x2, y2) and (x3, y3) with x1 < x2 < x3 using a function of the form

澳洲数学代考推荐
澳洲数学代考推荐

(a)Writedown the equations satisfied by a1, b1, c1, a2, b2, c2 when f (x) is continuous and passes through the given points.

(b)Writedown the equation satisfied by a1, b1, c1, a2, b2, c2 when f j(x) is continuous at x x2.

(c)Write down the matrix A and the vector b in the matrix equation Aa  =  b satisfied by  a  = [a1,b1, c1, a2, b2, c2]T when the conditions of both (a) and (b) are satisfied and when x1 = 0, x2 = 1, x2 = 2, y1 = 1, y2 = 3, y3 = 2. Explain why this system of equations does not have a unique solution.  澳洲数学代考推荐

(d)Let A and b be as in (c) and assume they have been defined in MATLAB/Octave. Using that a=A\b computes a solution (even if it is not unique) and n=null(A) computes a vector in N (A), write the MATLAB/Octave code that computes and plots two different interpolating functions of the form f (x) satisfying the conditions in (a) and(b).

澳洲数学代考推荐
澳洲数学代考推荐

3.Consider theplane S defined by 2u  3v w = 0, and recall that the normal to this plane is the vector a = [2, 3, 1].

(a)Computethe projections of vectors [1, 0, 0] and [0, 1, 0] onto the line spanned by a.

(b)Compute the projectionsof vectors [1, 0, 0] and [0, 1, 0] onto the subspace defined by S. What is the inner product of each of these projections with [2, 3, 1]?

(c) Find a basis for the subspace of R3 defined by S. What is the dimension of thissubspace?

(d)The reflection of vector x across a subspace is (2P I)x where I is the identity matrix and P is the matrix projecting x onto the subspace.

i.Drawa sketch to show why this definition of reflection makes sense.  澳洲数学代考推荐

ii.What is the reflection of [1, 0, 0] in planeS?

iii.What is the matrix (2P I)2?

4.Consider the following bivariatedata:

澳洲数学代考推荐
澳洲数学代考推荐

(a)Draw a sketch showing the approximate least-squares straight-line fit y = ax + b to this data.

(b) Write down the least squares (or normal) equation satisfied by

(c) What quantity is minimized by the solution to the equation in (b)?

5.Consider L2[a, b], the set of square-integrable functions on the interval x [a,b].  澳洲数学代考推荐

(a)Why do we say that the basis functions e2πinx/(ba)for n Z are orthogonal?

(b) Under what conditions on a and b are these functions orthonormal? Propose a set of basis functions for L2[a, b] that are orthonormal for any choice of a and b.

(c) Suppose a = 0, b = 1 and consider thefunction

澳洲数学代考推荐
澳洲数学代考推荐

Write down (but don’t bother evaluating) the integral you’d need to do to compute the Fourier coefficients cn for f (x).

(d) Are the quantities cn cn purely real, purely imaginary, or neither? Why?

(e) What is the sum

where cn are the Fourier coefficients of the function in part (c)?

6.Starting with initial values x0and x1, let xn for n = 2, 3, . . . be defined by the recursion relation

xn+1 = axn xn1,

where a is a real number.

(a)When this recursion relation is written in matrix form Xn+1= AXn, what are A and Xn?

(b)Find the eigenvalues and eigenvectors of A. What is det(A) and what does it tell you about the eigenvalues?  澳洲数学代考推荐

(c) In some applications we are interested in solutions xwhere limn→∞ xn = 0. Find non-zero initial conditions x0 and x1 that give rise to such a solution when a = 3. Solution: When a = 3 the eigenvalues are real and positive. Since λ+λ = 1 we know the smaller one λ must be less than

7.Thus we choose initial conditions to be the corresponding eigenvector,i.e., 澳洲数学代考推荐

(d) For  which values of a do the solutions to this recursion stay bounded, neither growing or decaying  as n → ∞? (You may disregard values of a for which A has repeated eigenvalues).

8.(a) Write down the definition of a stochastic (or Markov) matrix.  澳洲数学代考推荐

(b) What can you say about the relative sizes of Sv1 and v1 for a stochastic matrix S? Explain how this implies that all the eigenvalues λ of a stochastic matrix have |λ|  1.  Is it possible that all eigenvalues have |λ| < 1?  Give a reason.  What is S1 (i.e., the matrix norm when both input and output are measured with the 1-norm, also denoted S1,1)?

(c)What can you say about the eigenvalues of a stochastic matrix S if limn→∞Sn does not exist. Give an example of a stochastic matrix like  this.

(d) Consider the following internet.

In this diagram the links depicted by dashed arrows are displayed prominently and are therefore twice as likely to be followed than the remaining links on the page. Write down (i) the stochastic matrix associated to this internet with no damping and (ii) the first column of the stochastic matrix associated to this internet with damping factor 1/2. Explain how you could use the eig command in MATLAB/Octave to compute the limiting probabilies of landing on each site.

澳洲数学代考推荐
澳洲数学代考推荐

澳洲MATH数学代考
澳洲MATH数学代考

 

更多代写:AI代写  参考文献格式代写  英国伦敦Finance代写   参考文献格式代写  英国论文essay代写  商业法律代写论文

合作平台:essay代写 论文代写 写手招聘 英国留学生代写

 

天才代写-代写联系方式