实分析代写 Real Analysis代写

2022-01-06 11:55 星期四 所属: 作业代写,留学生作业代写-北美、澳洲、英国等靠谱代写 浏览:755

MT3502 Real Analysis – Problem Set

实分析代写 1 Sets, functions, numbers – revision 1.2Establishwhich of the following functions are injections, surjections and  Find the inverses o

1 Sets, functions, numbers – revision

1.1

Forall n = 1, 2, 3, . . . let Xn  R be the open interval (1/n, 2 + 1/n). Find

 

 

1.2

Establishwhich of the following functions are injections, surjections and  Find the inverses of any bijections (except for parts (g) and (h)).

(a) f  : R R f (x) = x2 (b)  f : R  R f (x) = x3

  • (c)  f : Z  Z f (x) = x2 (d)  f : Z  Z f (x) = x3(e)  f : Z  Z f (x) = x + 7 (f)  f : N  N f (x) = x + 7(g)  f : R  R f (x) = x3 + 9x (h)  f : R  R f (x) = x3  9x.

1.3

Let f : X Y be a function and A, B X Showthat

f (A  B) = f (A f (B),

f (A  B f (A f (B).

Give and example to show that “” cannot be replaced by”=” in the second case.

1.4  实分析代写

Letf A  B and g B  C be  Show that the composition g  f A  C is a bijection. Express (g  f )1 : C  A in terms of f 1 and g1.

1.5

For each of the following relations R, determine whether R is reflexive, symmetric, and transitive. For those that are equivalence relations, describe the equivalence

(a) On R, xRy if x y.

(b) On N, xRy if x is a multiple of y.

(c) OnR × R, (x, y)R(r, s) if x2 + y2 = r2 + s2.

(d) On C, zRw if Re(z) =Re(w).

 

Countable and uncountable sets  实分析代写

2.1

Let A = { a +bi : a, b∈N} , i.e. the set of complex numbers with real and imaginary parts both positive  Show that A is countable by each of the following methods:

(i) by enumerating the elements of A as alist,

(ii) by defining an injection from A toN,

(iii) by finding a known countable set (i.e. one discussed in the notes) similar to A.

2.2

Determine, giving brief reasons (you may quote any standard results from the notes), whether each of the following sets is countable or uncountable

 

实分析代写
实分析代写

 

2.3

Define f : N × N N by f (m, n) =2m3n. Show that f is an injection. Deducethat N × N is countable.

Now define f : {finite subsets of N} N by f ({i1, i2, . . . , ik}) = pi1 pi2 ··· pik where pi is the ith prime number. Show that f is an injection. Deduce that the set of all finite subsets of N is countable.

2.4 LetA = {(a1, a2, . . .) : ai Z for all }, i.e. the set of all sequences of integers. Use Cantor’s diagonal argument to show that A is uncountable.

 

实分析代写
实分析代写

 

2.6

LetC be the middle-third Cantor set, that is the set of all numbers in [0, 1] whose base 3 expansion uses only the digits 0 and 2. Show that C is uncountable. Sketch the set C. (Hint: Consider the numbers whose first digit is 0 or 2, then the numbers whose second digit is 0 or 2, and so on.) What is the ‘length’ of C? (use the obvious definition of length so that an interval [a, b] or (a, b) has length b a).

 

Convergence, continuity, uniform continuity  实分析代写

Infs and Sups

 

 

3.3 Let X ,Y be non-empty sets of real numbers. Show from the definition of supremum thatsup(X Y ) = sup X + supY , where X Y {x y x  X , y  Y }.

Find a counter-example to show that sup(XY ) = sup X supY is generally false, where XY = {xy : x X , y Y }.

Convergence of sequences

 

实分析代写
实分析代写

Continuous functions

3.8 Showfrom the definition of continuity that the following functions are continuous.

(a) f : [0, 1]  R given by f (x) = 1/(1 + x2),

(b) f: R  R given by f (x) = |x| [Hint: reverse triangle inequality],

(c) f: R  R given by f (x) = x3.

3.9 Show (a) from the definition of continuity and (b) using sequences that,if f , g : [a, b] R are continuous at c [a, b], then 2 f + 3g is continuous at c.

3.10 Let M > 0 and let f : R Rsatisfy

| f (x f (y)|  M|x  y| for all x, y  R.

Show that f is continuous.

Deduce that ‘cos’ is a continuous function.

3.11 Let f : [0, 1]  R be continuous with  f (x) ∈ Q for all x ∈R.  Show that  f  is a  constant function, i.e. that there exists ∈Q such that f (x) = q for all ∈[0, 1]. [Hint: intermediate value theorem]

 

实分析代写
实分析代写

 

Uniform continuity

 

 

3.15 Show from the definition that the following functions are not uniformly continuous:

(a) f: R  R given by f (x) = x3,

(b) f: (0, 1)  R given by f (x) = 1/x.

3.16 Let M > 0 and let f: R → R be differentiable and such that f (x) M for all ∈ R. Show that f is uniformly continuous on R. [Hint: mean value theorem]

Deduce that f (x) = x2/(1 + x2) is uniformly continuous on R.

 

Integration  实分析代写

You may find it helpful to sketch graphs for many of the questions in this section.

 

 

 

Sequences and series of functions, power series  实分析代写

5.1

Definefn, f : [0, ∞)  R by fn(x) = x/(x n) and f (x) =  Show that:

(a) fnf pointwise,

(b) fnf uniformly on [0, 2],

(c) for all a > 0, fnf uniformly on [0, a],

(d) fndoes not converge uniformly to f on [0, ∞).

  • 5.2

  • Define fn, f : [0, ∞)  R by fn(x) = nx/(1 + nx) and f (x) = 1 (x > 0), f (0) = 0. Show that:

(a) fnf pointwise,

(b) fnf uniformly on [1, ∞),

(c) for all a > 0, fnf uniformly on [a, ∞),

(d) fdoes not converge uniformly to f on [0, ∞). [Hint: use a standard result on uniform convergence.]

5.3

Define fn : [0,1] R by fn(x) = xn(1x). Show that fn 0 uniformly. [Hint: you may need a different argument for ‘close’ to 1 from other values of x.]

 

实分析代写
实分析代写

 

 

Metric and normed spaces  实分析代写

6.1 Which of the following define a metric on R? Justify your

(a) d(x, y) = x2 y2,

(b) d(x, y) = |x2 y2|,

(c) d(x, y) = |x3 y3|.

6.2 Which of the following define a metric on R2? Justify your

(a) d ((x1, x2), (y1, y2)) = 3|x1  y1| + 2|x2  y2|,

(b) ((x1, x2), (y1, y2)) = |x1 y1||x2  y2|,

 

实分析代写
实分析代写

 

6.4

Let(X , d) be a metric  Show that for all x, y, z, w  X ,

(a) d(x, y d(x, z) + d(z, w) + d(w, y),

(b) d(x, z) d(y, zd(x, y).

 

实分析代写
实分析代写

 

6.8 Let(X , d) be a metric  Show from the definitions of metric and convergence that a sequence can have only one limit, i.e. if xn  x and xn  y then x y.

6.9 Let(X , d) be a metric  Show that if xn  x and yn  y then d(xn, yn d(x, y).

6.10 Showthat if xn  x in a normed space (X , ‖·‖ ) and scalars λn  λ, then λnxn  λx.

 

 

6.12 Let ‖‖and ‖‖2 both be norms on a vector space X . Show that ‖x = ‖x1 + ‖x2 also defines a norm on X . Show that a sequence (xn) converges to (x) in ‖‖ if and only if it converges to x in both‖‖1 and ‖‖2.

6.13

Showfrom the definition that the following are Cauchy sequences:

(a) (n/(2n + 1)) in (R, | |),

(b) fn(t) = tn in (C[0, 1], ‖‖1).

 

实分析代写
实分析代写

 

6.15 Let ‖‖1and ‖‖2 be equivalent norms on a vector space X , i.e there are constants  a, b > 0 such that ax1 x2 bx1 for all x X . Show that a sequence (xn) converges to x in ‖‖1 if and only if it converges to x in ‖‖2. Similarly, show that a sequence (xn) is Cauchy in ‖‖1 if and only if it is Cauchy in ‖‖2. Deduce that X is complete with norm ‖‖1 if and only if it is complete with norm ‖‖2.

6.16 Using the previous question, and the fact that (RN , ‖‖1) is complete (shown in lec- tures)show that (RN , ‖‖2) and (RN , ‖‖) are complete.

 

网课代管
网课代管

 

 

 

更多代写:计算机代上网课推荐  GMAT代考  英国Assignment统计学代写  留学生作业essay代写  留学生高中论文代写  代写accounting

合作平台:随笔代写 论文代写 写手招聘 英国留学生代写

 

 

 

天才代写-代写联系方式