当前位置:天才代写 > report代写 > online dating website代写 Economic代写 Project代写 code代写

online dating website代写 Economic代写 Project代写 code代写

2020-10-30 16:37 星期五 所属: report代写 浏览:15

online dating website代写

esearch Project description Micro1

online dating website代写 Estimating partner preferences of online daters in high-paid and low-paid occupationsMarriage partners generally

“Estimating partner preferences of online daters in high-paid and low-paid occupations”

Marriage partners generally match on intelligence,online dating website代写

education, social background, ethnic origin, religion, height, weight, attractiveness, and no doubt other traits too.2 Why is this? There are a number of explanations. One is a preference story: if individuals prefer marriage partners with traits similar to their own (or prefer traits inpartners in similar ways), marriage partners will match on similarities. Another story is one of search frictions: if individuals are more likely to meet their partner in self-selected environments (such as clubs, schools, jobs,neighborhoods), they are also more likely to meet a partner with traits similar to their own, regardless of partner preferences. It has proven difficult, however, to empirically isolate the impact of partner preferences using information on realized partner matches alone.online dating website代写

One possible solution for identifying partner preferences is to run a field experiment in the context of an online dating website and send random invitations from fictitious profiles to online daters. With profiles traits manipulated along two dimensions (attractiveness and education), the responses of online daters will then measure the true preferences for partner attractiveness and education. This is what Ekström, Egebark, Plug,and Van Praag (2018) do in their paper Brains or Beauty? Causal Evidence on the Returns to Education and Attractiveness in the Online Dating Market. It is highly recommended that you read this paper.

This project builds on the work of Ekström et al (2018). online dating website代写

In particular, students are asked to test whether online daters who work in high-paid occupations respond differently to profile invitations than online daters who work in low-paid occupations. This project will provide insights on a number of theoretical marriage modelssuggesting that partner preferences might vary with the earnings potential of husbands and wives. In traditionalmodels of household specialization, for example, women are said to prefer men in high-paid occupations over men in low-paid occupations because they can offer more resources for raising children (Becker 1981).online dating website代写

The two data files for this project are (i) a restricted version of the data file used in Ekström et al (2018), with information on the online daters’ age, attractiveness, education, gender; occupation (four-digit occupation classification ISCO 2008), type of profile invitation, and reply; (ii) a data file drawn from the Wage IndicatorSurvey, with information on hourly earnings per occupation (four-digit ISCO 2008).3

With these data files, students have to (i) distinguish high-paid (above median) from low-paid (below median) occupations for men and women separately; (ii) replicate the main findings reported in Ekström et al. (2018)Table 5;4 (iii) test whether main findings hold for a selected sample of employed online daters by estimating the partner preferences for online daters with (nonmissing) occupational information; and (iv) test whether the partner preferences are different for male and female online daters working in high-paid and low-paid occupations. Finally, they have to describe these findings in a coherent paper.

online dating website代写
online dating website代写
The papers and data file are available for download on Blackboard. online dating website代写

1 Developed by Erik Plug.

2 Economists call these marriage patterns positive assortative matching. Sociologists call these patterns homogamy.

3 For details on the Wage Indicator Survey, we refer to Tijdens, and Osse. (2015). Wage Indicator continuous web-survey on work and wages. Amsterdam: University of Amsterdam/AIAS and Stichting Loonwijzer.

4 Your results will be slightly different because not all control variables are included in your dataset.

To help you with the analysis, here are some tips:

1.Firstyou will have to merge the two  The codes in your second file are not unique, you will therefore not use the merge 1:1 but merge m:1. The rest of the syntax is similar. online dating website代写

2.Youwill have to create (generate) two new variables: a dummy for whether or not the wage is missing, and a dummy for whether or not someone earns above the median. In order to find out what the median is type: tabstat wagehour, by(female) s(median). With this information you will be able to create this 

3.Inspectthe  Which variables are in your data set. Inspect the means for all variables. Specify them by gender and inspect the differences.

4.Checkfirst whether the three groups are equal on all  Use a regression.

5.If you want to do a regression for only women (or men) or high paid workers use if ‘variable’==1 (or 0). This way you tell STATA only to include the variable that fulfill this criterion.Mind though that you still have to decide which variable you will set to one or online dating website代写

6.To check whether there is an interaction effect of education and attractiveness create an interaction variable. This interaction term will have the following form: c.variable1#c.variable2.You have to fill in a variable name for ‘variable 1′ and ‘variable2’. See also clab4.1. You will need this information for question 

7.Youmight want to create tables in which all models are summarized  To do that, type first ssc install estout. With the eststo command you can indicate which models you want to put in one table (Cf. Clab 4.1 or clab4.2).

Key reference online dating website代写

Ekström, Egebark, Plug, and Van Praag. (2018). Brains or Beauty? Causal Evidence on the Returns to Education and Attractiveness in the Online Dating Market. Working Paper.

Related references

Becker. (1981). A Treatise on the Family. Cambridge, MA: Harvard University Press

Fisman, Iyengar, Kamenica, and Simonson. (2006). Gender differences in mate selection: Evidence from a speed dating experiment. Quarterly Journal of Economics 121, 673-697.

Hitsch, Hortaçsu, and Ariely. (2010). Matching and sorting in online dating. American Economic Review 100, 130–163.

online dating website代写
online dating website代写

更多其他:C++代写 java代写 r代写 代码代写 金融代写  物理代写 考试助攻 C语言代写 finance代写 lab代写 计算机代写 code代写 data代写 report代写

合作平台:天才代写 幽灵代写 写手招聘 Essay代写

 


天才代写-代写联系方式