Programming Exercise 3
Singly Linked List Implementation and Application
1. Purpose
The purpose of this exercise is to make the students familiar with:
(1) the implementation of basic operations of singly linked list;
(2) the basic application of singly linked list;
2. Grading Policy
(1) The full mark is 100, which is equivalent to 5 points in the final score of this course.
(2) The assessment is based on the correctness and quality of the code, the ability demonstrated in debugging and answering related questions raised by the lecturer and teaching assistants.
(3) The exercises should be completed individually and independently.
(4) Some reference codes are provided at the end of this document, only for the purpose of helping those students who really have difficulties in programing. It is allowed to use the reference codes. However, straight copy from the reference codes or with minor modification can only guarantee you to get a pass score. Therefore, the students are encouraged to write their own codes to get a higher score.
3. Contents of Exercises
3.1 Implementation of basic operations of singly linked list
Exercise 3.1 (60 points)
Create a singly linked list with some data elements, and finish such operations as initialization, insertion, deletion etc.
All operations should be implemented as independent functions, which can be called by the main function.
(1) Create a singly linked list with data elements of 21, 18, 30, 75, 42, 56, and output all the elements
(2) Get the length of the list, and output the value;
(3) Get the 3rd element of the list, and output the value;
(4) Insert 67 into the list at positon 3, and then output all the elements in the list;
(5) Delete the 2nd element from the list, and then output all the elements in the list;
(6) Search for 30 in the list. If found, report the position of the element;
3.2 Application of singly linked list
Exercise 3.2(20 points)
Based on the singly linked list created in step(1) of Exercise 3.1, complete following tasks:
(1) Get the maximum data element in the list, and print the maximum data;
(2) Test whether the list is in ascending order;
Exercise 3.3 (20 points)
Create a singly linked list with head node and with date elements as 10, 21,32,43,54, 65, 76, and complete following tasks:
(1) Insert 35 into the list, and keep the list in ascending order;
(2) Delete all the elements whose data value are between 22 and 57
4. Reference Code
Exercise 3.1
#include <stdio.h> #include <stdlib.h> #include <malloc.h> #define ERROR 0 #define OK 1 #define TRUE 1 #define FALSE 0 typedef int ElemType; typedef int Status; // definition of node structure of singly linked list typedef struct L_node { ElemType data; // data field struct L_node *next; // pointer field }LNode, *LinkedList; //========================================== // initialization of singly linked list L with head node //=========================================== Status InitList_L(LinkList &L) { L=(LinkList) malloc(sizeof(LNode)); //make a node if(!L) return ERROR; L->next=NULL; //empty list return OK; } //=========================================== // Create a singly linked list L with head node, and with n elements //=========================================== Status CreateList_L(LinkList &L, int n) { LinkList p, q; int i ; L=(LinkList) malloc(sizeof(LNode)); //create an empty list if(!L) return ERROR; L->next=NULL; q=L; for(i=0; i<n; i++){ p=(LinkList) malloc(sizeof(LNode)); //make a new node if(!p) return ERROR; scanf(&p->data); //enter element data from keyboard add some codes here } p->next=NULL; return OK; } //========================================= // Get the length of a singly linked list with head node //========================================= int ListLength_L(LinkList L){ int i; LinkList p; p=L->next; //let p point to the first node i=0; // i is a counter while(p){ //traverse the list to count the nodes add some codes here } return i; } //======================================== // Get the ith element of a singly linked list //======================================== Status GetElem_L (LinkList L, int i, ElemType &e){ int j; LinkList p; p=L->next; //let p point to the first node j=1; // j is a counter while(p && (j<i)){ // move p until p points to the ith element add some codes here //or p becomes NULL } if(!p||j>i) return ERROR; // the ith element doesn’t exist e=p->data; // get the data of the ith element return OK; } //=============================================== // search for an element in a singly linked list and return its position //============================================== int LocateElem_L (LinkList L, ElemType e) { int j; LinkList p; p=L->next; // p points to the first node j=1; // j is a counter while(p && ! (p->data!=e)){ // move p p=p->next; ++j; // until p points to the ith element } add some codes here } //===================================== // Insert element e at the ith position of a singly linked list //==================================== Status ListInsert_L(LinkList &L, int i, ElemType e) { int j; LinkList p, s; p=L; j=0; while(p && j<i-1){p=p->next;++j;} //locate the (i-1)th node if(!p||j>i-1) return ERROR; //i <1 or i > list length s=(LinkList)malloc(sizeof(LNode)); //make a new node add some codes here return OK; } //=================================================== // Delete the ith elment from //==================================================== Status ListDelete_L(LinkList &L,int i,ElemType &e) { int j; LinkList p; p=L; j=0; while(p->next && j<i-1){ //locate the ith node, //and p points to its precursor p=p->next; ++j; } if(!(p->next && j<i-1) return ERROR; //error for the position for deletion add some codes here return OK; } //====================================== // Print the elements in a list //======================================= void LinkedListPrint(LinkedList L) { LinkList p; p=L->next; printf(“\nThe elements of linked list is:”); while(p){ printf(“%d, ”, p->data) ; p=p->next; } printf(“\n”); } int main() { int e; ElemType e; LinkedList LA; int len; int tmpPos; // Create a singly linked list with elements of 21, 18, 30, 75, 42, 56 CreateLinkedList(LA, 6); LinkedListPrint(LA); // get the length len=ListLength_L(LA); printf(“the length of the list is %d\n”, len); //get the 3rd element GetElem_L(LA, 3 ,e); printf(“the 3rd element is %d\n”, e); // insert 67 into the list at position 3 ListInsert_L(LA, 3, 67); LinkedListPrint(LA); //delete the 2nd element ListDelete_L(LA, 2); LinkedListPrint(LA); // Search for 30 in the list e=30; tmpPos = LocateElem_L(LA, e); printf(“the position of element %d is %d”, e, tmpPos); return OK; }
Exercise 3.2
Note: reusable codes in Exercise 3.1 are not repeated here.
//=======================================
// test whether a singly linked list is in ascending order //======================================= int IsAscendingOrder_L(LinkList L) { LinkList p; p=L->next; while(p->next){ add some codes here. } } return TRUE; //================================= // Get the maximum element in a singly linked list //================================ Status GetMaximum_L(LinkList L, ElemType &e) { LinkList p; int tempMax; p=L->next; if(!p) return ERROR; tempMax=p->data; while(p){ add some codes here } e=tempMax; return OK; } int main() { int e1; ElemType e; LinkedList LA; int len; int retVal; // Create a singly linked list with elements of 21, 18, 30, 75, 42, 56 CreateLinkedList(LA, 6); LinkedListPrint(LA); //Get the maximum data of the list, and print the data; GetMaximum_L(LA, e); printf(“the maximum data is %d\n”, e); //test whether list is in ascending order retVal=IsAscendingOrder_L(LA); if(retVal ) printf(“the list is in ascending order”); else printf(“the list is not in ascending order”); return OK; } Exercise 3.3 Note: reusable codes in Exercise 3.1 are not repeated here. //======================================== // Insert element into an ascendingly ordered list L, and keep L in ascending order //======================================== Status OrderedListInsert(LinkList L, ElemTpye e) { LinkList p; p=L->next; while(p){ add some codes here //find the proper position where element e is inserted } s=(LinkList)malloc(LNode); //make a new node if(!s) return ERROR; s->data=e; add some codes here //insert the new node into the linked list return OK; } //============================================================ // From an ascendingly ordered linked list, delete all the elements ranged between a and b, // where a<b //============================================================ Status OrderedListDelete(LinkList &L, int a, int b) { LinkList p; p=L->next; while(p && (p->data < a)){ p=p->next; } while((p->next) && (p->next->data < b){ add some codes here } return OK; } int main() { LinkedList LA; // Create a singly linked list with by date elements as 21, 18, 30, 75, 42, 56 CreateLinkedList(LA, 6); LinkedListPrint(LA); //insert 35 into the list; OrderedListInsert(LA, 35); LinkedListPrint(LA); //delete all the elements ranged between 22 and 57 OrderedListDelete(LA, 22, 57); LinkedListPrint(LA); }
代写CS&Finance|建模|代码|系统|报告|考试
编程类:C++,JAVA ,数据库,WEB,Linux,Nodejs,JSP,Html,Prolog,Python,Haskell,hadoop算法,系统 机器学习
金融类:统计,计量,风险投资,金融工程,R语言,Python语言,Matlab,建立模型,数据分析,数据处理
服务类:Lab/Assignment/Project/Course/Qzui/Midterm/Final/Exam/Test帮助代写代考辅导
天才写手,代写CS,代写finance,代写statistics,考试助攻
E-mail:850190831@qq.com 微信:BadGeniuscs 工作时间:无休息工作日-早上8点到凌晨3点
如果您用的手机请先保存二维码到手机里面,识别图中二维码。如果用电脑,直接掏出手机果断扫描。