当前位置:天才代写 > R语言代写,r语言代做-无限次修改 > 数据科学编程作业代写 ST340代写

数据科学编程作业代写 ST340代写

2022-11-03 11:35 星期四 所属: R语言代写,r语言代做-无限次修改 浏览:610

ST340 Programming for Data Science

Assignment 3

 

数据科学编程作业代写 Instructions Work in groups Specify your student number and name on your assignment. You need submit only one copy for each group.

Instructions

  • Work in groups
  • Specify your student number and name on your assignment. You need submit only one copy for each group.
  • Any programming should be in R. Your report should be created using R markdown. Submit a single knitted pdf document which includes any code you have written (together with the rmd file)
  • This assignment is worth 17% of your overall mark

 

Q1 Gradient descent  数据科学编程作业代写

Here is a function that does gradient descent with a fixed number of iterations to find local minima:

gradient.descent <- function(f, gradf, x0, iterations=1000, eta=0.2) {
  x<-x0
  for (i in 1:iterations) {
    cat(i,"/",iterations,": ",x," ",f(x),"\n")
    x<-x-eta*gradf(x)
  }
  x
}

Example:

f <-function(x) { sum(xˆ2) }
gradf<-function(x) { 2*x }
gradient.descent(f,gradf,c(10,20),10,0.2)

(a) Write a short function that uses gradient.descent to find a local maximum. (For the purpose of this question, gradient.descent is a “black box”. Don’t worry about the printed output, just the return value matters.)

i.e.

gradient.ascent <- function(f, df, x0, iterations=1000, eta=0.2) {
# ... use gradient.descent(...) here ...
}
f <-function(x) { (1+xˆ2)ˆ(-1) }
gradf<-function(x) { -2*x*(1+xˆ2)ˆ(-2) }
gradient.ascent(f,gradf,3,40,0.5)

(b) Consider the function f : R2 R given by

f <- function(x) (x[1]-1)ˆ2 + 100*(x[1]ˆ2-x[2])ˆ2

i) Give a short mathematical proof that f has a unique minimum.

ii) Write a function gradf to calculate f, i.e.

gradf <- function(x) { # ... use x[1] and x[2] ... }

iii) Starting from the point x0=c(3,4), try to find the minimum using gradient descent.

gradient.descent(f,gradf,c(3,4), ... , ...)

(c) Write a function to do gradient descent with momentum. Starting from the point x0=c(3,4), use your function to find the minimum of the function from part (b).

 

 

Q2 Support vector machines   数据科学编程作业代写

Run the following code to load the tiny MNIST dataset:

load("mnist.tiny.RData")
train.X=train.X/255
test.X=test.X/255

and then show some digits:

library(grid)
grid.raster(array(aperm(array(train.X[1:50,],c(5,10,28,28)),c(4,1,3,2)),c(140,280)),
              interpolate=FALSE)

(a) Use three-fold cross validation on the training set to compare SVMs with linear kernels, polynomial kernels and RBF kernels, i.e.

library(e1071)
svm(train.X,train.labels,type="C classification",kernel="linear",cross=3)$tot.accuracy
svm(train.X,train.labels,type="C-classification",kernel="poly",
  degree=2,coef=1,cross=3)$tot.accuracy

etc. (The flag warning=FALSE is helpful here. What is the suppressed warning message warning you about?)

(b) For the RBF kernels, write a grid search function that takes two lists, log.C.range and log.gamma.range, and for each pair (lc,lg) of entries in the pair of lists attempts cross-validation with parameters cost = exp(lc) and gamma=exp(lg). Once you have found the model with the best cross-validation error, train it on the full tiny’ training set and then test it on thetiny’ test set.

数据科学编程作业代写
数据科学编程作业代写

 

 

更多代写:c++代码辅导  线上考试如何作弊   英国商业伦理学代写   社会学essay代写  社会研究学paper代写  布朗大学申请代写

合作平台:essay代写 论文代写 写手招聘 英国留学生代写

 

天才代写-代写联系方式