当前位置:天才代写 > 作业代写,留学生作业代写-北美、澳洲、英国等靠谱代写 > 运筹学代考 Operations Research代写

运筹学代考 Operations Research代写

2021-11-16 12:14 星期二 所属: 作业代写,留学生作业代写-北美、澳洲、英国等靠谱代写 浏览:620

运筹学代考

Midterm of ECEGY 6233 Spring 2021

运筹学代考 Determine the plastic moment capacities Mb , M c and the plastic hinge moments M 3 , M4, M5 for the above formulation.

Problem 1:  运筹学代考

Given f  =

4x221  + 3x222  – 4x1 x2  x1 ,  the point X0  = (-1/ 8,  0)T  ,  and the direction vector d0= – (1/ 5,  2 / 5)T

(i) Is d0 a decent direction?

(ii) Denoting g(a ) =  f (x0  + ad0 ),  find dg(1) / da ,  or equivalently, g’(1).

运筹学代考
运筹学代考

Problem 2: 运筹学代考

Consider a minimum weight design problem based on plastic collapse formulated by

minimize

P = 8Mb + 8Mc

subject to M3 ≤Mb ,

M4 ≤Mc ,

M5Mc ,

2M3 – 2M4 + M5 -1120 ≤Mc,

2M3 – M4 – 800 ≤ Mb ,

2M3 – M4– 800 ≤Mc ,

Mb  ≥ 0, Mc  0,

M3  , M 4 , M 5 unrestricted in sign

Determine the plastic moment capacities Mb , M c and the plastic hinge moments M 3 , M4, Mfor the above formulation.

Problem 3:  运筹学代考

Consider the following constrained minimization problem

minimizef = 0.01x2 + x2

subject to

g1= 25 –x1x2 ≤ 0,

g1 = 2 – x1 ≤ 0,

x1 ≥0,x≥ 0

(i)Obtain the solution graphically.

(ii)Obtain the solution using KKT condition.

(iii)Verify the sufficient conditions for optimality.

运筹学代考
运筹学代考

 

更多代写:美国Matlab代写  天文学代考  台湾essay代写  土木工程essay代写  台湾论文代写  音乐Essay代写

合作平台:essay代写 论文代写 写手招聘 英国留学生代写

 

天才代写-代写联系方式