当前位置:天才代写 > 商科代写,金融经济统计代写-100%原创拿高分 > 统计R语言时间序列问题代写编程金融代做题目:Stat 4443/6443 Time Series Assignment 2

统计R语言时间序列问题代写编程金融代做题目:Stat 4443/6443 Time Series Assignment 2

2018-02-12 08:00 星期一 所属: 商科代写,金融经济统计代写-100%原创拿高分 浏览:780

Stat 4443/6443 Time Series

Assignment 2

 

(Due in class on February 8, 2018)

 

 


 

Part I Practical problems

 

Problem 1 [4*4=16 points]. The data of monthly numbers of sunspots recorded from 1964 till 1983 are in the file Sunspots1964_1983.mtw in the D2L.

 

a) Do a time series plot of the monthly numbers of sunspots recorded from 1964 till 1983. Comment on trend, seasonal effects and variations.

 

b) Take square root of the monthly numbers of sunspots recorded from 1964 till 1983. Do a time series plot of this square root transformed sunspot data. Comment on trend, seasonal effects and variations.

 

c) Take the difference of lag 1 on the square root transformed sunspot data. Comment on trend, seasonal effects and variations.

 

d) Plot the ACF and PACF functions of the difference data in part c) and comment on possible autocorrelations.

 

 

 

Part II. Theoretical problems

 

Problem 2. [10 points each, 2*10 = 20 points]

 

Let { Zt } be a sequence of independent normal random variables, each with mean 0 and variance σ2, and let a, b, and c be constants. Which, if any, of the following processes are stationary? For each stationary process specify the mean and autocovariance function.

 

A) Xt = a + bZt + cZt−2

 

B) Xt = Z1 cos(ct) + Z2 sin(ct)

[Hint: cos(φ – θ) = sin(φ)sin(θ) + cos(φ)cos(θ)]

 

Problem 3. [15 + 15 = 30 points]

 

Given a seasonal series of monthly observations with a linear trend m t = a + bt and seasonal effect s t = s t -12 for all t. In addition, {Yt} is a zero mean white noise. Show that

 

A) for an additive model X t = m t + s t + Yt , the new time series 12 X t = X t – X t –12 is weakly stationary.

 

B) for a multiplicative model X t = m ts t + Yt , the new time series 12 X t = X t – X t –12 is not weakly stationary.


 

Problem 4. [10 + 16 = 26 points]

 

A) Let Wt be a white noise process { Wt } WN(0, 2). Derive the autocovariance Cov(Vt, Vt+2) for the 3-point moving average process Vt = 0.2Wt-1 + 0.5Wt + 0.3Wt+1.

 

B) Let Xt be a random walk with a constant drift such that Xt = + Xt-1 + Wt where Wt is a white noise { Wt } WN(0, 2).

 

i) Derive the expectation E(Xt) and covariance Cov(Xt, Xs) = min{s,t}  2.

 

ii) Derive the autocovariance Cov(   Xt,   Xt-1 ) for the difference process   Xt = Xt – Xt-1.

 

 

Problem 5. [16 points]

Which of a) – d) is correct? Prove your answer carefully.

 

 

Part III. [for Master Students in Statistics, bonus for other students]

 

Problem 6. [10 points each, 2*10 = 20 points]

 

Let { Zt } be a sequence of independent normal random variables, each with mean 0 and variance σ2, and let a, b, and c be constants. Which, if any, of the following processes are stationary? For each stationary process specify the mean and autocovariance function.

 

A) Xt = Zt cos(ct) + Zt−1 sin(ct)

 

B) Xt = ZtZt−1

代写计算机编程类/金融/高数/论文/英文


  u=199783060,2774173244&fm=58&s=188FA15AB1206D1108400056000040F6&bpow=121&bpoh=75.jpgalipay_pay_96px_533896_easyicon.net.pngpaypal_96px_533937_easyicon.net.pngchina_union_pay_96px_533911_easyicon.net.pngmastercard_pay_96px_533931_easyicon.net.pngasia_pay_96px_533902_easyicon.net.png

本网站支持淘宝 支付宝 微信支付  paypal等等交易。如果不放心可以用淘宝或者Upwork交易!

E-mail:850190831@qq.com   微信:BadGeniuscs  工作时间:无休息工作日-早上8点到凌晨3点


如果您用的手机请先保存二维码到手机里面,识别图中二维码。如果用电脑,直接掏出手机果断扫描。

qr.png

 

    关键字:

天才代写-代写联系方式