当前位置:天才代写 > 作业代写,留学生作业代写-北美、澳洲、英国等靠谱代写 > Bayesian Inference and Computation代写 assignment代写 quiz代写

Bayesian Inference and Computation代写 assignment代写 quiz代写

2020-10-19 17:59 星期一 所属: 作业代写,留学生作业代写-北美、澳洲、英国等靠谱代写 浏览:899

Bayesian Inference and Computation代写

MATH3871/MATH5970

Bayesian Inference and Computation代写 This is the second assignment for course MATH3871/5960.The assignment consists in two parts:a quiz

Bayesian Inference and Computation

Introduction Bayesian Inference and Computation代写

This is the second assignment for course MATH3871/5960.

The assignment consists in two parts: a quiz and a programming part. The deadline for both is the 6th of November 2019 at 6PM (Sydney time). The deadline is strict.

For this assignment, it is possible to work in groups of maximum 4 people. However, it is not compulsory: groups may be formed by 1, 2, 3 or 4 people.

Each student should complete the quiz individually, while the programming part must be submitted once for each group. The members of the group should be clearly stated at the beginning of the code. Every results should be properly commented. Only .py or .R (or .rmd) files will be accepted. The programming part should run without errors to be evaluated.

The quiz worths 6 points, while the programming part worths 14 points. The weight for this assignment on the final mark is 20%.

These instructions are strict.

Bayesian Inference and Computation代写
Bayesian Inference and Computation代写

Assignement 2 Bayesian Inference and Computation代写

The annual number of serious accidents in the mines of Great Britain were recorded every year from 1851 to 1962. We want to build a statistical model to evaluate if during those 112 years there has been a change in the rate of occurrence of events, which could perhaps be due to legislative changes to protect security.

Let (Y1, . . . , Ym1, Ym, Ym+1, . . . , Yn) be the number of annual incidents, with

Yi  P oi(λ) i = 1, 2, . . . , m

Yj  P oi(φ) j m + 1, . . . , n

The unknown parameters of the model are (φ, λ, m), while n is known and equal to 112.

Since the observations are supposed to follow a Poisson distribution, it is reasonable to consider Gamma priors for (φ, λ):

λ Gamma(α, β) φ Gamma(a, b)

On the other side, the parameter m can have a uniform distribution:

m U nif (0, n 1)

The data are the following:

y=c(4,5,4,1,0,4,3,4,0,6, 3,3,4,0,2,6,3,3,5,4,5,3,1,4,4,1,5,5,3,4,2,5,2,2,3,4,2,1,3,2,

1,1,1,1,1,3,0,0,1,0,1,1,0,0,3,1,0,3,2,2,0,1,1,1,0,1,0,1,0,0,

0,2,1,0,0,0,1,1,0,2,2,3,1,1,2,1,1,1,1,2,4,2,0,0,0,1,4,0,0,0,

1,0,0,0,0,0,1,0,0,1,0,0)Bayesian Inference and Computation代写

Write an MCMC algorithm to perform a Bayesian analysis for this model. It could be useful to procede with the following steps

  • write the likelihoodfunction;
  • write the full posteriordistribution;
  • codea Gibbs sampler with N = 10000 simulations and with a burnin of 1000 values;
  • plotthe simulates marginal chain for each parameter and comment;
  • analyse the convergence of the chains with at leasttwo tools;
Bayesian Inference and Computation代写
Bayesian Inference and Computation代写

更多其他:C++代写 java代写 r代写 代码代写 金融代写  python代写 web代写 物理代写 数学代写 考试助攻 C语言代写 计算机代写 finance代写 code代写

合作平台:天才代写 幽灵代写 写手招聘 Essay代写

 

天才代写-代写联系方式