当前位置:天才代写 > 商科代写,金融经济统计代写-100%原创拿高分 > 经济统计网课代考 TEST代写

经济统计网课代考 TEST代写

2021-10-13 15:23 星期三 所属: 商科代写,金融经济统计代写-100%原创拿高分 浏览:646

经济统计网课代考

TEST

经济统计网课代考 To obtain sample information, a survey is independently ad- ministered to 100 people asking them whether they are going to buy the mobile phone.

Q1 A multinational consumer electronics company is releasing a new mo- bile phone in a particular country, and would like to estimate consumer demand.  经济统计网课代考

To obtain sample information, a survey is independently ad- ministered to 100 people asking them whether they are going to buy the mobile phone. The survey revealed that 65 out of 100 would buy the mobile phone. Let θ denote the proportion of people who would buy the mobile phone. The goal is to estimate θ based on this sample information.

(a)Beforetaking into account sample information, the company’s belief about θ can be modelled by a Beta(α, β) Show that the posterior distribution of θ given the data is Beta(α + 65, β + 35). You do not need to evaluate any integrals or normalising constants. [4]

(b)Thecompany decides to model their prior beliefs about θ using a Beta distribution with a mean of 0.7 and standard deviation 0. Write down the parameters α and β of the Beta(α, β) distribution which represent this belief (you may want to look at the formula sheet). [2] 经济统计网课代考

(c)Write down the posterior distribution for θ using the above survey answersand the prior from part (b). [3]

(d)Givea point estimate for θ under squared error  [2]

(e)Provethat the mode of a Beta(α, β) distribution is  and hence give a Bayesian point estimate for θ under the 01 loss function. [4]

经济统计网课代考
经济统计网课代考

Q2 An investment company wishes to model the daily log-returns of a financial stock. The following historical record is available:

Y1 = 0.42, Y2 = 0.49, Y3 = 0.21, Y4 = 0.42, Y5 = 0.56, Y6 = 0.2

Assume that daily log-returns are independent and identically dis- tributed draws from a Normal distribution with known mean 0 but unknown variance σ2.

Consider an alternative parametrization of the distribution of Yi:

经济统计网课代考
经济统计网课代考

where τ is the precision parameter defined as the reciprocal of the variance σ2, i.e.

(a)Usingthe Gamma(α, β) distribution as a conjugate prior for τ , de- rive the posterior distribution based on this historical  You do not need to evaluate any integrals or normalising constants.[4] 经济统计网课代考

(b)Let Y˜denote the log-return on a particular day in the future. Show that the posterior predictive distribution is of the following form:

经济统计网课代考
经济统计网课代考

for some values of α˜ and β˜.  Using the numeric values of Y1, . . . , Yprovided above, give expressions for α˜ and β˜ in terms of α and β.State the set of possible values that Y˜can take. [7]

(b)Statethe Pickands Balkema de Haan theorem and explain why it may be of use in risk  [4]

(c)Findthe probability of log-return on the following day, Y7, falling below 0.7 using a Generalised Pareto Distribution (GPD) with threshold u = 0. Use the method of moments to estimate the GPD parameters. [8]

(d)Discuss the strengths and weaknesses of modelling data in this context using a Normal distribution versusthe  [3] 经济统计网课代考

(f)Considersome random variable X which has an exponential dis- tribution, i.e. X Exponential(λ). Given a threshold u, let Fu denote the distribution function of X conditional on X > u. In other  words,  for  all  z  >  u,  we  have  Fu(z)  =  p(X   z|X  >  u). Show  that  Fu(z) = 1  eλ(zu). [4]

Q3 A financial company located on an island sells hurricane protection in- surance. 经济统计网课代考

In order to price this insurance product, the company wishes to build a statistical model for inter-arrival times between successive hurricanes. Let Y1, . . . , Yn denote the number of years between succes- sive hurricanes that hit the island. The company decides to model these as independent and identically distributed random variables following a Geometric(θ) distribution with the probability mass function:

p(Y  = k|θ) =  (1  θ)k1θ, k = 1, 2, 3 . . . θ [0, 1]

The company has access to the following historical record:

Y1 = 2, Y2 = 1, Y3 = 3, Y4 = 3, Y5 = 2, Y6 = 3

(a)Thecompany decides to model its beliefs about the probability of a hurricane occurring in any given year using a Beta distribution with a mean of 0.4 and standard deviation 0.2. Find the corre- sponding values of α and β for the conjugate Beta(α, β) prior that represent the company’s beliefs about θ. [2]

(b)Write down the posterior distribution for θ using the historical record and the prior from part (a), and clearly state itsparame- ters. [3] 经济统计网课代考

(c)LetY˜= 1, 2, 3, . . . denote the waiting time between two successive

hurricanes in the future. Derive the posterior predictive distribu- tion p(y˜ y1, . . . , y6) based on the historical record, and show that it has the following form:

for some values of α˜  and β˜ that you should define. [4]

For the remainder of this question you can use the fact that the Beta function B(α, β) in the Beta distribution, is defined as:

and that when n is a positive integer, Γ(n) = (n 1)!.

(d)The company now suspects that there might have been a struc- tural change in the hurricane frequency due to climate change. Thisimplies that the change point has occurred immediately af- ter observation Y3 and the probability of a hurricane occurring in any subsequent year has  Thus, observations Y4Y5 and Y6 still come from a Geometric distribution but with a different parameter θ, i.e.:

经济统计网课代考
经济统计网课代考

Define the two models:

M0 : There has been no change point in the hurricane frequency. M1 : There has been a change point in the hurricane frequency immediately after observation Y3.

Assuming that there have been no other change points, compute marginal likelihoods under both models p(y1, . . . , y6 Mi), and de- cide whether there has been a structural change in the hurricane frequency. Both models M0 and M1 are equally likely a priori. Note that you should use prior from part (a) in model M0, and for both segments in model M1. [16]

(e)Thereis evidence that there have been no change  Now the company wishes to compare M0 model with an Exponential distri- bution model M2. The company assumes that it is fine to model the discrete number of years using the Exponential distribution for continuous random variables. 经济统计网课代考

Define the two models:

M0 : The observations are Yi Geometric(θ).

M2 : The observations are Yi i.i.d. Exponential(λ).

Compute the marginal likelihood p(y1, . . . , y6|M2) under model

M2 using Gamma(1, 1) prior.  Making use of the marginal likeli-

hood under model M0 from part (d), decide which model is better supported by the data. Both models M0 and M2 are equally likely a priori. [5]

Q4 (a) Let Y  i.i.d.Bernoulli(θ). It is of interest to estimate θ using the loss function 经济统计网课代考

Let the estimator be as follows:

经济统计网课代考
经济统计网课代考

Compute the risk function, and find values of α and β  for which θ^ is minimax.   [8]

(b)LetIt is of interest to estimate σ2 using the loss functionL(σ2, bσ2 ) =(σ2 bσ2)2 .

Let the estimator be as follows: Compute the risk function.[7]

(c) A car manufacturer is faced with the  following  two  actions:  a1  –  advertise  new model in various media, or a2 – do not advertise. The effectiveness of advertisement depends on the state of the economy: θ1 is “bad”, θ2 is “moderate”, and θ3 is “good”. 经济统计网课代考

The losses corresponding to each action ai, i = 1, 2, and type θj, j = 1, 2, 3, are represented by the following loss matrix :

  a1 a2
θ1 1 0
θ2 0.5 0.5
θ3 0 1

Find the minimax  randomized action. [5]

Q5 Let Yt =l n(Pt) l n(Pt1) denote t he daily l og-return on a financial asset, where Pt i s the opening daily price at t ime t .

(a) The following model has been proposed to describe the behaviour of log-returns:

Derive the unconditional variance of Yt  clearly showing all your steps. [6]

Q6 Consider the following information on the hypothetical portfolio of £10,000 invested in two assets.

The information on each daily asset return is provided in the table below. It is assumed that these returns are jointly normally distributed.

经济统计网课代考
经济统计网课代考

(i)Computethe 99% 1-day Value-at-Risk (VaR) of the portfolio in value  Interpret your findings. [4] 经济统计网课代考

(ii)ConsiderABC Insurance company that wishes to measure its risk  Let Lt denote independent and identically distributed annual aggregate losses that follow the exponential distribution with mean 10, i.e. E(Lt) = 10. Note that the losses are positive.

Compute the Expected Shortfall (ES0.99) which is defined as follows:

ES0.99 = E [Lt|Lt  V aR0.99]         [6]

经济统计网课代考
经济统计网课代考

更多代写:cs代上网课推荐 Cs北美代考 Critical Review Essay代写范文 Essay Claims代写 essays论文格式 统计网课托管

合作平台:essay代写 论文代写 写手招聘 英国留学生代写

 

天才代写-代写联系方式