当前位置:天才代写 > 作业代写,留学生作业代写-北美、澳洲、英国等靠谱代写 > 理科数学作业代写 Mathematics代写

理科数学作业代写 Mathematics代写

2023-05-26 15:14 星期五 所属: 作业代写,留学生作业代写-北美、澳洲、英国等靠谱代写 浏览:407

理科数学作业代写

School of Mathematics and Statistics

MT4003 Groups

Problem Sheet VII: Simple Groups

理科数学作业代写 Prove that if G is a simple group, and Ø : G → H is a non-trivial homomorphism (i.e. im Ø≠ 1) then Ø is injective.

1.Show that any simple abelian group is cyclic of prime order.  理科数学作业代写

2.Let n > 5, and let N be a non-trivial normal subgroup of Sn.

(a) Show that N = An or N = Sn.

[Hint: If  Sn, consider N ∩ An.]

(b) Prove that Sn is directly indecomposable.

(c) Describe all homomorphic images of  Sn.

理科数学作业代写
理科数学作业代写

3.(a) Let K be the subgroup of A5 generated by its 5-cycles. Show that K is a normal subgroup of A5 and hence deduce that K = A5.  理科数学作业代写

(b) Suppose that H is a subgroup of S5 such that |S5: H| < 5. Let σ be any 5-cycle. By considering cosets of H containing powers of σ, show that σ must lie in H.

Hence prove that H = A5 or S5.

(c) Show that A5 has no proper subgroup of index less than 5.

[Hint for (b): If a coset of H contains two distinct elements from {1, σ, σ2, σ3, σ4}, show that H con-tains σ.]

4.Prove that if G is a simple group, and Ø : G → H is a non-trivial homomorphism (i.e. im Ø≠ 1) then Ø is injective.

 

理科数学作业代写
理科数学作业代写

更多代写:经济学代做  雅思家庭版  理工科Assignment代写  留学生Exam Essay代写  经济学英语论文范文  数学网课代修价格

合作平台:essay代写 论文代写 写手招聘 英国留学生代写

 

天才代写-代写联系方式