Test 4, March 27, 2020
MAT235Y1Y
Duration: 24 hours
澳大利亚数学代考 a)(3 marks) Evaluate the line integral C sin x dy, where C is the part of the curve y = x2 from the point (0, 0) to the point (π, π2).
This test has 6 pages. 澳大利亚数学代考
Total: 50 marks
All answers must be your own work.
No marks will be given for a completely wrong solution.
Last name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
First name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Student ID number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. (10 marks) 澳大利亚数学代考
a)(3 marks) Evaluate the line integral C sin x dy, where C is the part of the curve y = x2 from the point (0, 0) to the point (π, π2).
(A) 2π (B) π (C) 0 (D) −π (E) π
Write the (capital) letter of the answer in this box. Only the answer in the box will be marked. )
b)(4 marks) Evaluate the line integral C F n ds, where C is the circle x2+ y2 = 4 with counter clockwise orientation, n is the unit outward normal vector to the curve C and F(x, y) = (x3 , 2y3 ). 澳大利亚数学代考
(A) 6π (B) 12π (C) 0 (D) π (E) 4
Write the (capital) letter of the answer in this box. Only the answer in the box will be marked. )
c)(3ma√rks) Set up the volume of the solid bounded by the surface x = 1 − z, the planes x = 0, y = 0, y = 1 and z = 0 as an iterated integral in the order of dy dx dz.
Answer
2.(10marks) Let F(x, y, z) = (yz, xz, xy). 澳大利亚数学代考
(a)(4marks) Show that curl F(x, y, z) = 0.
b)(6marks) Use a potential function f of F to solve the line integral ∫ F · dr, where C is the curve given by ˙r(t) = (et, t2 − 1, 2t + 1) from t = 0 to t = 1.
3.(10marks) Use transformations x+y = u, y = v to evaluate the inte-gral ∫∫ √4 − (x + y)2 dA, where D is the trapezoidal region bounded by the lines x + y = 1, x + y = 2, y = 0 and x = 0. 澳大利亚数学代考
- (10marks) Evaluate the integral (x2 +z) dV , where E is the solid E that lies within the cylinder x2 +y2 = 1 and the sphere x2 +y2 +z2 = 4, and above the xy-plane.
5.(10 marks) Evaluate the integral , where E is the solid bounded by the sphere x2 + y2 + z2 = 4 and above the plane z = 1.
更多代写:Matlab网课代做 Online exma代写 英国Conclusion代写 爱尔兰paper代写 英国paper代写 数学Final exam代考