当前位置:天才代写 > 作业代写,留学生作业代写-北美、澳洲、英国等靠谱代写 > 数学实分析作业代写 Math 441/541代写

数学实分析作业代写 Math 441/541代写

2024-06-27 11:30 星期四 所属: 作业代写,留学生作业代写-北美、澳洲、英国等靠谱代写 浏览:164

Math 441/541 Real Analysis Homework # 1

 

1.  数学实分析作业代写

Prove that every non-empty subset of R that is bounded above has a least upper bound if and only if every non-empty subset of R that is bounded below has a greatest lower bound. (That is, prove that the Least Upper Bound Property of R is equivalent to the Greatest Lower Bound Property of R)

 

2.

If A and B are subsets of R, define

A + B = {a + b : a A and b B}.

(a) If A and B are both non-empty subsets of R which are bounded above, prove that

sup(A + B) = sup A + sup B.

(b) If A and B are both non-empty subsets of R which are bounded below, prove that

inf(A + B) = inf A + inf B.

 

 

3.  数学实分析作业代写

If A and B are both non-empty subsets of R, with A B, prove that

inf B inf A sup A sup B.

 

4.

If A is a non-empty subset of R, define A = {−a : a A}. Prove that

sup(A) = inf A,   and inf(A) = sup A.

 

5.  数学实分析作业代写

Let S be a non-empty subset of R. Let f : S R and g : S R be two functions with bounded range; that is, f(S) and g(S) are bounded subsets of R. Prove

(a) sup{f(x) + g(x) : x S} ≤ sup{f(x) : x S} + sup{g(x) : x S}.

(b) inf{f(x) + g(x) : x S} ≥ inf{f(x) : x S} + inf{g(x) : x S}.

(c) Give examples to show that it is possible to have strict inequalities in (a) and (b).

数学实分析作业代写
数学实分析作业代写

 

 

 

更多代写:cs北美留学生辅导  多益代考  英国生物学网课代考   北美文科作业代写  澳洲哲学网课代考 统计p-value代写

合作平台:essay代写 论文代写 写手招聘 英国留学生代写

 

天才代写-代写联系方式