当前位置:天才代写 > 作业代写,留学生作业代写-北美、澳洲、英国等靠谱代写 > 实分析数学作业代写 Math 441/541代写

实分析数学作业代写 Math 441/541代写

2024-08-30 09:22 星期五 所属: 作业代写,留学生作业代写-北美、澳洲、英国等靠谱代写 浏览:29

Math 441/541 Real Analysis

 

Homework # 5

 

实分析数学作业代写
实分析数学作业代写

 

Homework # 6  实分析数学作业代写

 

  1. Let K be a non-empty compact subset of R. Prove that sup K and inf K both exist and both are elements of K.
  2. Let K be a non-empty compact subset of R and let y R with yK. Prove that there exists elements a and b in K such that

|a y| = inf{|x y| : x K} and |b y| = sup{|x y| : x K}.

  1. Prove that the union of a finite number of compact subsets of R is compact. Does a countable union of compact subsets of R have to be compact? Explain your answer.
  2. Let A and B be two non-empty compact subsets of R. Define

d(A, B) = inf{|a b| : a A, b B}.

Prove that A B if and only if d(A, B) = 0.

 

Homework # 7  实分析数学作业代写

  1. Let f : [a, b] R be a continuous function on [a, b] with f([a, b]) [a, b]. Prove that there exists a point x [a, b] such that f(x) = x.
  2. Suppose that K is a compact subset of R and f : K R is continuous on K. Prove that {x K : 0 f(x) 1} is a compact set.
  3. Prove that f : [0, ) R defined by f(x) = x is uniformly continuous on [0, ).

 

 

更多代写:cs北美网课代做  托福作弊被抓  英国统计代上网课价格   北美MKT代写  北美Chemistry化学quiz代考  软件原理家庭作业代写

合作平台:essay代写 论文代写 写手招聘 英国留学生代写

 

天才代写-代写联系方式