当前位置:天才代写 > 作业代写,留学生作业代写-北美、澳洲、英国等靠谱代写 > 代写多变量微积分作业 MATH2720代写 Calculus代写

代写多变量微积分作业 MATH2720代写 Calculus代写

2022-05-23 14:51 星期一 所属: 作业代写,留学生作业代写-北美、澳洲、英国等靠谱代写 浏览:1118

代写多变量微积分作业

MATH2720 Multi-variable Calculus: Assignment 4

代写多变量微积分作业 You must submit your signed Academic Integrity Declaration form and completed problem set on Crowdmark by the deadline.

CrowdMark Instruction

We will be using Crowdmark to grade assignment/test submissions. You will get a personalized submission link sent to your UManitoba email address. Do NOT share this link with other students.

If you cannot find the notification email in your inbox, check your spam folder or search your email for all emails containing the word ”crowdmark.”

If you really cannot find your link, contact Dr. Xinli (xinli.wang@umanitoba.ca) at least a day before the assignment deadline, and I will re-send it to you. Make sure you use the email policy so your email is not filtered out.

How do I write my solutions?  代写多变量微积分作业

  • Option 1: Write your answers electronically. Convert your solutions to pdf when you are done, such that each question starts in a new file.
  • Option 2: Write your answers by hand. Then take a picture with your phone (not recommended) or scan your answers (using the library scanners, or a mobile app like Scanbot or Microsoft Office Lens or Google Drive (Android only)(recommended). Make sure each question starts in a new file, and that your picture/scan is clear and legible. You will receive no credit if your answers cannot be clearly read.

How do I submit my work?  代写多变量微积分作业

  • Click the link in your notification email from Crowdmark.
  • Upload your answers to each question separately. (You may use multiple pages perquestion)
  • Rotatepages if necessary, and order pages correctly for each question.
  • Submit.
  • Save a copy of the confirmation page for your records.
  • You are allowed to change your answers by resubmitting as many times as you need before the deadline.

Submission of Assignment

You must submit your signed Academic Integrity Declaration form and completed problem set on Crowdmark by the deadline.

  • Late assignments will not be accepted.
  • Consider submitting your assignment well before the deadline.
  • If you require additional space, please insert extra pages.
  • You must justify and support your solution to each question.
代写多变量微积分作业
代写多变量微积分作业

Academic Integrity Declaration  代写多变量微积分作业

Declaration: I, the undersigned, declare that all the work I will submit to fulfill the requirements for this assessment  is wholly my own work. During the test/exam I will not:

  1. copy by manual or electronic means from any work produced by any other person or persons, present or past, including tutors or tutoringservices;
  2. share questions or answers in whole or in part with anyone, including posting portions of the test/exam in publicly accessiblelocations;
  3. copy from any source including textbooks and websites,or
  4. consultexternal websites, online forums, search engines,  or any resource not appearing in the list of acceptable test materials above.  代写多变量微积分作业

Students must not discuss or communicate the contents of the test or exam with any person except their instructor until 24 hours after the end of the test or exam.

By signing this document, I acknowledge that I have read and will follow the instructions for acceptable material during the test/exam.

I understand that penalties for submitting work which is not wholly my own, or distributing my work to other students, isconsidered an act of Academic Dishonesty and is subject to penalty as described by the University of Manitoba’s Student Discipline Bylaw. These penalties that may apply range from a grade of zero for work, failure in the course, to expulsion from the University.

Name:                                      

 

Student number:                                            

 

Date:                                                 

 

Signature:                                          

List of problems  代写多变量微积分作业

D\L 80 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80
1 1440 1440 1122 977 897 843 799 762 727 693 657 615 563 489 362 0 0
32 1440 1225 995 904 850 811 779 753 727 702 676 646 610 559 478 292 0
60 1183 914 841 804 780 763 749 737 727 715 705 692 677 656 626 567 378
91 551 640 671 687 699 707 714 720 726 733 740 748 759 773 796 839 975
121 208 549 514 582 625 656 682 706 727 749 772 799 833 881 958 1131 1440
152 0 0 383 502 571 621 660 695 727 760 796 836 888 964 1097 1440 1440
172 0 0 352 484 559 613 655 698 727 763 801 845 901 982 1132 1440 1440
182 0 0 360 488 562 614 654 693 727 762 799 843 898 978 1123 1440 1440
213 0 253 461 549 603 641 673 701 727 753 782 815 856 915 1013 1281 1440
244 333 550 616 649 672 689 702 715 726 738 752 766 785 811 851 932 1252
274 904 808 777 760 750 742 736 731 726 722 718 713 707 701 690 671 616
305 1440 1107 947 874 828 796 770 758 727 707 685 660 630 589 524 390 0
335 1440 1440 1091 960 887 836 794 760 728 695 661 622 573 505 389 0 0
356 1440 1440 1133 983 901 845 801 763 728 693 655 613 559 485 353 0 0

Table 1: Number of minutes of sunlight.

1.Table 1 shows M (D, L), the number of minutes of sunlight per day as a function of the day D of the year and latitude L.  代写多变量微积分作业

Positive latitudes indicate degrees north of the equator, negative latitudes indicate degrees south of the equator. (Note: Grand Rapids is at approximately 43◦ latitude.)

(a)Estimate as best you can each of the first order partial derivatives and write one sentence that describes,  in context, the meaning of the derivative. Include appropriate units in your description.

代写多变量微积分作业
代写多变量微积分作业

(b)Estimate as best you can each of the second order partial derivatives and write one sentence thatdescribes, in context, the meaning of each. Include appropriate units in your description. Carry your approximations to two decimal places. Is Clairaut’s Theorem satisfied? Explain.  代写多变量微积分作业

2.Findthe limit, if it exists, or demonstrate that the limit does not exist.

代写多变量微积分作业
代写多变量微积分作业

(a)

(b)

3.Find all first and second order partial derivatives.

(a)f(x, y) = y2  cos(xy)

(b)

代写多变量微积分作业
代写多变量微积分作业

 

更多代写:多伦多代写  GRE代考  工商代写  批判性散文代写  人力资源代写论文  pte代考靠谱吗

合作平台:essay代写 论文代写 写手招聘 英国留学生代写

 

天才代写-代写联系方式