﻿ 澳大利亚数学Midterm代考 Math 327代写 - 数学代写, 考试助攻

# 澳大利亚数学Midterm代考 Math 327代写

2021-11-03 15:47 星期三 所属： 数学代写 浏览：46 ## Math 327 Fall 2016 Midterm 1

You may use one 8.5 x 11 sheet of notes; writing is allowed on both sides.

You may use a calculator.  澳大利亚数学Midterm代考

You can use elementary algebra and any result that we proved in class (but not in the homework). You need to prove everything else.

Please raise your hand and ask a question if anything is not clear. This exam contains 6 pages and is worth a total of 50 points.

You have 50 minutes. Good luck

NAME:

PROBLEM 1 (10 points)

PROBLEM 2 (17 points)

PROBLEM 3 (11 points)

PROBLEM 4 (12 points)

Total

• ### Problem 2 Given S = { 2n+1|n ∈ N } Let s = sup S and i = inf S  澳大利亚数学Midterm代考

a)(6 points) Find the value of i and prove i = infS.

b)(6 points) Find the value of s and prove s = supS  澳大利亚数学Midterm代考

• ### Problem 3(7 points)Prove that if the sequence {an} converges to a then  the sequence {|an|} converges to |a|.(you can use the inequality (|x − y|≥||x| − |y||)

(4 points) Is it true  that if an converges to a then an converges to a ? Justify your answer.

• ### Problem4(12 points) Say if each of the statements below is True or False (just write T or F next to each of them), and briefly explain why. 澳大利亚数学Midterm代考

1.A convergent sequence must be monotone and bounded.

1. A decreasing sequence converges.

1. A set S can have a maximum but no least upper bound.

1. Q is closed.   澳大利亚数学Midterm代考

1. Q is open.

1. Assume {an} converges , and {bn} is a sequence.Then {an  bnconverges if and only if {bn} converges. 