当前位置:天才代写 > 作业代写 > MATH1代写 Take-Home Exam代写 function代写 code代写

MATH1代写 Take-Home Exam代写 function代写 code代写

2021-03-15 17:44 星期一 所属: 作业代写 浏览:46

MATH1代写

MATH 185 – Take-Home Exam 1

MATH1代写 By taking this exam, you agree to not discuss the exam with anyone, starting now, neither with a classmate or anyone else, neither

Due Sunday,  May  5th, by  11:59 PM

 AGREEMENT MATH1代写

By taking this exam, you agree to not discuss the exam with anyone, starting now, neither with a classmate or anyone else, neither in person nor through other means, including electronic. Please do not post questions on Piazza. Unless otherwise speci- fied, it is acceptable to copy-paste from the lecture or homework solution code. 

Problem 1. (Student vs Wilcoxon) Suppose we have a numerical sample of size n which weassume was generated iid from an underlying distribution F , unknown with a well-defined mean µ.MATH1代写

  • Student’s t-test is a test about the mean: Is µ equal to a given valueµ0?
  • Wicoxon’s signed-rank test is a test for symmetry: Is F symmetric about a givenµ0?

That being said, the t-test can be used to test whether F is symmetric about µ0, based on the fact that ‘symmetric about µ0’ implies that ‘the mean is equal to µ0’.  However,  the two are not equivalent, so that the t-test is not consistent against all alternatives. Conversely, for the signed- rank test to be useful as a test about the mean, we need to assume that F is symmetric about its mean.

MATH1代写
MATH1代写

With this additional (and nontrivial) assumption on F ,MATH1代写

testing for symmetry about µ0 is equivalent to testing whether the mean equal to µ0. (Convince yourself of that.) In what follows, we place ourselves in that situation, so that we can directly compare the two tests. There is some theory on that. For example, it is known that when F is a normal distribution, in which case the t-test achieves the most power asymptotically (meaning in the large-sample limit), the signed-rank test performs almost as well. We want to evaluate that with simulations.

Since both tests are scale-free, we may take that F to be the normal distribution with mean µ and variance 1.  We  consider the two-sided setting where we test µ = 0 versus µ ƒ= 0.  For  each  n  {10, 20, 50, 100, 200, 500} do the following. For each µ in a grid of your choice, denoted M and of size 10, generate X1, . . . , Xn  N (µ, 1) and apply the t-test and signed-rank test, both set at level α = 0.10. Record whether they reject or not. Repeat this B = 1, 000 times and compute the fraction of times each test rejects. This estimates the power of each test against the alternative µ.MATH1代写

The end result is a plot where these estimated power curves for each of these two tests are overlaid. Use colors and a legend to identify the two curves. Make sure to choose M so that we can see the power go from about α to about 1, zooming in on the action.

Note. When this problem is completed, you will have generated 6 plots all together, each with the estimated power curves for the two tests.)

Problem 2. (Fungi in brassica plants) MATH1代写

Consider the following article about how different brassica plants are affected by  different types of Rhizoctonia fungi.1  Read enough of the article      to understand the premise and the main findings. Otherwise, we  will focus on the data given in  Table 6 on how different brassica species are affected by different types of Rhizoctonia fungi.

A.Write a function tableObsExp(dat) taking in a two-column data frame, with each column repre- senting a factor, and then outputting a table  of observed and expected (under no association)  ofcounts — similar to what Table 6 in that article looks like.

B.Enter the observed counts from Table 6 (likely by hand, as the data do not seem directlydownloadable) and apply your function to recover a similar table.

C.Continuing with the same dataset, produce a couple of plots using function in the ggplot2.MATH1代写

D.Finally, ask a question and formalize it into a hypothesis testing problem. Perform a testand offer some brief comments.

1 The article was published in the scientific journal PLOS ONE and is available online at the following address

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111750

MATH1代写
MATH1代写

其他代写:algorithm代写 analysis代写 app代写 assembly代写 assignment代写 C++代写 C/C++代写 code代写 course代写 dataset代写 java代写 source code代写 Task代写 web代写 作业加急 北美cs代写 北美代写 北美作业代写 数据分析代写 编程代写

合作平台:essay代写 论文代写 写手招聘 英国留学生代写

 

天才代写-代写联系方式