﻿ 初等实分析作业代写 Elementary Real Analysis代写 - 作业代写

# 初等实分析作业代写 Elementary Real Analysis代写

2022-04-12 11:50 星期二 所属： 作业代写 浏览：113 ## Assignment 5- Elementary Real Analysis

### 1 . Suppose x, y, z, u satisfy the equation

where a, b, c are constants. Prove that ### 2 . (i) Assume f (x, y) is defined on a convex set E R2. Show that if fx= 0 in E the  n f(x, y) only depends on y.  初等实分析作业代写

(ii) Show that the above convex condition can be replaced by a weaker condition, but some condition is required. For example when E is shaped like a horseshoe, the statement may be false.

### 3(Convex functions).Assume D Rnis a convex  domain and f: D →R is a function.

The function f is said to be convex if When the above ‘ ≤’ is replaced by ‘<’, we say f is strictly convex.

(i)Assume f ∈ C1(D). Show that f is convex in D if and only if

f (y)  f (x)+ ∇f (x· (y  x),x, y ∈ D.   初等实分析作业代写

(ii)Assume f C2(D). Show that f is convex in D if and only if the Hessian matrix

D2f (x) is positive semi-definite for every x ∈ D.

### 4(Continuity of the distance function).Assume x,y Rn, E Rn, and ρ is a distance function on Rn.

(i)Fixedany y Rn .  Show that ρ(x, y) is a uniform continuous function for x ∈Rn .

(ii)Letρ(x, E) := inf ρ(x, y). Show that ρ(x, E) is a uniform continuous function for x ∈ Rn .  初等实分析作业代写

(iii)Let a  R. Show that the set Ga {x ∈ Rn ρ(x, E< a} is open and the set Fa = {x ∈ Rn : ρ(x, E) a} is closed.

### 5(Extension of a continuous function on a compact set).Assume K⊂ Rnis a compact set and f is a continuous function on K with 0 ≤ f (x) ≤ 1 for x ∈ K. Let

(i)Show that f˜(x) is continuous for x ∉ K.

(ii)Show that f˜(x)  is continuousfor x ∈ K. That is for any x0 ∂K.Here, ∂K denotes the boundary of K. Thus, (i) and (ii) together imply that f˜(x) is continuous on Rn.

(iii)Show that 0 f˜(x) 1 for x ∈ Rn.  初等实分析作业代写

(iv)Assumeg is a continuous and nonconstant function on K, denote Using f (x) and parts (i)–(iii) to show that g(x) can be extended to a continuous function

g˜(x) on Rn   with m  g˜(x M .

(v)If a function h is continuous on an open set D ⊂ Rn , is h always possible to be extended to a continuous function on Rn ? Consider the function h(x) = tan x for x (π/2,π/2).

### 6(Mollifier). Consider the function  初等实分析作业代写

(i)Show that if a function φ(t) is defined in a neighborhood Vϵ(t0) and the limit lim φ(t) =l exists, then φ (t0) exists and φ (t0) = l.

(ii)Using part (i) to show that g C(R).

(iii) Let where ωn is the surface area of the unit sphere in Rn . Denote||x|| = (x21 + · · · + xx2n)1/2for x Rn . Show that the function

has the following properties

#### 1) j(x) ≥ 0 for every x ∈ Rn; and j(x) = 0 when ∥x∥ ≥ 1;

2) 3)  j(xC0(Rn ).

Here, C0(A)  stands  for  the  set  of  smooth  functions  on  A  with  a  compact  support.   The support of a function is defined as

supp f = {x A f (x) 0} := the closure of the set where f does not vanish.  初等实分析作业代写

And if f  is smooth on A and supp f  is a compact subset of A, we write f   C0(A).

In what follows, we assume f is continuous on a compact K Rn . By Problem 9, f can be extended to a continuous function on Rn , (we still denote this extension by f ). Define (1)

which can be considered as the weighted average of f in the ball Vε(x).

(iv)Show that fε(x) C(Rn).

(v)Show that,limε0+fε(x) = f (x) uniformly for x K.

(vi)Redopart (iv) for an integrable function f on K: Assume f is integrable on K, and

extend f to Rn by setting f (x) = 0 for x / K. Show that, in this case, fε(x) defined in (1) also belongs to C0(Rn ).

### 7 (Partition of unity).  初等实分析作业代写

(i)Assume K U Rn with K being nonempty compact and open.Let

Here, ρ(x, K) is the distance of x to the set K as considered in Problem 8, and ρ(X, Y ) :=inf xX, yρ(x, y) being the distance between two nonempty sets X and Y .

Let 0 < ε < δ/2. Show that fε(x) defined in (1) [as in Problem 10, part (vi)] satisfies

1)fε(x) = 1 when x K;

2)0 fε(x) 1 for all x ∈ Rn;   初等实分析作业代写

3)suppfε  U .

(ii)Assume K Rn is compact and U1, . . . , UNis a finite open cover of K. Show that there exists another open cover V1, . . . , VN such that each Vj is bounded and Vj  Uj.

(iii)Assume K Rn is compact and U1, . . . , UNis a finite open cover of K. Show that

there exist functions h1(x), . . . , hN (x) such that

1) hj(x) C(Rn ) and supp hj  Uj;

2)  hj(x) ≥0;

N

3) = 1 for x  K.

j=1

### 8. Letx,yRnand y = f (x) be a function. Recall that in the inverse theorem, one requires that f (x) to be C1 near the point x0.  初等实分析作业代写

Consider the case n = 1 and

where 0 < α < 1.

(i)Findf(x) and show that f(x) is not continuous at 0.

(ii)Show that there are infinitely many points near x = 0 such that f (x) = 0 and

f′′(0)≠ 0, and thus conclude that there is no inverse function of y = f (x) near x = 0. 