﻿ 决策模型和分析代考 Midterm代写 - 考试助攻, 金融经济统计代写

# 决策模型和分析代考 Midterm代写

2021-12-03 16:04 星期五 所属： 考试助攻 浏览：38

## Midterm

### Question 1决策模型和分析代考

DECISION VARIABLES:

Xi, for number of shares to sell i=1,2,3 tech, bio, airline

OBJECTIVE FUNCTION:

Maximize ∑ Pi * (Ci-Xi)

#P = expected price next year for the stock #C = current number of shares for the stock

CONSTRAINTS:

#CPi = current price of the stock #C = purchase cost

∑ (Xi * CPi – Xi(CPi – Ci)*0.3 – Xi*CPi *0.01) ≥ 150,000

Xi ≥ 0, for all i=1, 2, 3

### Question2 决策模型和分析代考

(a)

DECISION VARIABLES: Xij, i=1-9, j=1-8

Xij = 1, if driver i picks up rider j Xij = 0, otherwise

OBJECTIVE FUNCTIONS: to minimize total ETA

#ETA : estimated time of arrival

#Extra: extra time from picking up sharing riders

Extrai = 1, if more than 1 customer  决策模型和分析代考

Extrai = 0, otherwise

Min [∑∑(ETAij Xij) + Extra1 + Extra2]

CONSTRAINTS:

Xij binary 1<=i<=9, 1 <= j <=8

∑8𝑗=0𝑋𝑖𝑗 <=2 for each i=1,2

∑8𝑗=0𝑋𝑖𝑗 <=1 for each i=3,4,….9

∑𝑋𝑖𝑗9𝑖=0 =1 for each j=1,2,3…8

<=2 for each i=1,2

<=1 for each i=3,4,….9

=1 for each j=1,2,3…8

(b)

Minimum sum of ETA : 53  决策模型和分析代考

Matching:

Driver 1: rider 1, 8

Driver 3: rider 2

Driver 5: rider 3

Driver 6: rider 4

Driver 7: rider 5

Driver 8: rider 6

Driver 9: rider 7

### Question3

DECISION VARIABLES:

Xij, i=1-12, j=1,2,3 (small, medium, large)

OBJECTIVE FUNCTIONS: to maximize total revenue

Maximize (∑∑(Xij*Rj)

CONSTRAINTS:

Xij int, 1<=i<=12, 1<= j <=3    决策模型和分析代考

(Xi1*1 +Xi2 *2 + Xi3*3) <= 8, for each i=1,2,3,…12

(Xi1*2 +Xi2 *4 + Xi3*7) <= 188, for each i=1,2,3,…12

Xij <= Rij, for each i=1,2,3,…12, j =1,2,3

#R: requested number of projects

See Bonus Question Below!!!

### Bonus Question决策模型和分析代考

Maximize 4X1 + 2X2 Constraints:

X1 ≤ 20

X2 ≤ 25

X1 ≤ -2/3X2 + 100/3 X1, X2 ≥ 0

Values:

A: 2(0) + 4(0) = 0

B: 2(25) + 4(0) = 50

C: 2(25) + 4(50/3) = 350/3 = 116.67 D: 2(20) + 4(20) = 120

E: 2(0) + 4(20) = 80

-We cannot go from point D to point E because the value would decrease.

-Therefore, D is the optimal point with optimal value of 120.

-The oracle is right because (20, 20) is the optimal solution with optimal value of 120.