当前位置:天才代写 > 作业代写 > 代写博弈论作业 Game Theory代写 ECON0027代写

代写博弈论作业 Game Theory代写 ECON0027代写

2022-05-11 08:24 星期三 所属: 作业代写 浏览:94

代写博弈论作业

ECON0027 Game Theory Home assignment 1

代写博弈论作业 Analyzethe equilibria of the game you have constructed, explaining whether the situation that arose was unavoidable, or could have been prevented.

1.Inhis book Leo the African, Amin Malouf relates the following story:  代写博弈论作业

Halfway between Fez and Meknes we stopped for the night in a village called ‘Ar, Shame. The imam of the mosque offered to accomodate us in return for

a donation for the orphans whom he looked after. He… lost no time in telling us why this village should have such a name. The inhabitants, he informed us,had always been known for their greed and used to suffer from this reputation. The merchant caravans avoided it and would not stop there.

One day, having

learned that the King of Fez was hunting lions in the neighborhood, they decided to invite him and his court, and killed a number of sheep in his honour. The

sovereign had dinner and went to bed. Wishing to show their genoros- ity, they placed a huge goatskin bottle before his door and agreed to fill it up with milk  代写博弈论作业

for the royal breakfast. The villagers all had to milk their goats and then each of them had to go to tip his bucket into the container. Given its great size, each

of them said to himself that he might just as well dilute his milk with a good quantity of water without anyone noticing. To the extent that in the morning

such a thin liquid was poured out for the king and his court that it had no other taste than the taste of meanness and greed.

(a)Setout the interaction between the villagers as a game in strategic form, spec- ifying clearly how the payoffs to each villager depends upon their individual actions and those of others.

(b)Analyzethe equilibria of the game you have constructed, explaining whether the situation that arose was unavoidable, or could have been prevented.

(c)Define a strictly dominated strategy. Suppose that strategy siis strictly dom- inated for player Show that si cannot be played in a pure strategy Nash equilibrium. Show also that it cannot be played with positive probability in a mixed strategy Nash equilibrium.  代写博弈论作业

代写博弈论作业
代写博弈论作业

2.Considera game of n players in which each player chooses an effort level ei 0, i = 1, .., n.

The marginal benefit of effort for player i depends on the effort exerted by the other players. In particular, the payoff of player i is

代写博弈论作业
代写博弈论作业

where parameters ai > 0, wij 0 are commonly known for all i and j. The players choose their effort levels simultaneously and independently.

(a)Solve for a best reply ofplayer i.

(b)Assume that ai= a > 0 and wij = w for all i, j. Provide the conditions under which symmetric NE in pure strategies  Provide intuition for your result.

(c)Assume that n = 3, ai= a > Consider two situations: first  w12 = w23 = w13 = w, and second w12 = w23 = w, w13 = 0. Assuming that 0 < w < 1/2, compare the equilibrium effort level of player 2 in these two situations (you may impose reasonable symmetry assumptions on equilibrium). Provide intuition for your result.

3.Consider the game depicted

L R
T a11, b11 a12, b12
B a21, b21 a22, b22

(a)Definea weakly dominated strategy and set out conditions on the payoffs so that player 1 (the row player) has a weakly dominated strategy.

(b)Set out conditions on the payoffs such that the game has two pure strategy equilibria, (T, L) and (B,R).  代写博弈论作业

(c)ANash equilibrium (s1, s2) is said to be strict if s1 is the unique best response to s2 and s2 is the unique best response to s1 (i.e. each player incurs a payoff loss by deviating from his equilibrium strategy). Assume that (T, L) and (B, R) are both strict Nash equilibria, and solve for a completely mixed Nash equilibrium,i.e. one where each player randomizes between his two pure strategies, as a function of the payoffs, aij and bij. Show that if the Nash equilibria (T, L) and (B, R) are not strict, then there may not be a completely mixed Nash equilibrium.

4.Considera road which is represented by the interval [0, 1]. Let a be a number such that 0 < a < 1代写博弈论作业

Vendor 1 can locate at any point on the interval [0, a] (that is, he can locate at any  point x such that 0   x   a). Vendor  2 can locate at any  point  on the interval [a, 1]. A unit mass of onsumers are uniformly distributed on [0, 1] and each consumer buys one unit of the good from the vendor who is closest to him. If the two vendors locate at the same point a, then each gets one-half of the consumers.

The game is as follows. Vendors choose locations simultaneiously, and a vendor’s payoff is given by the number of consumers who purchase from him.

(a)Writedown the strategy sets and payoff functions in this game.  代写博弈论作业

(b)Supposea = 0.5. Show that this game has a unique Nash equilibrium in pure strategies. That is, you need to show (i) there is a Nash equilibrium, and (ii) there is no other Nash equilibrium.

(c)Suppose a < 0.5. Show that the game does not have a Nash equilibrium in pure strategies.

代写博弈论作业
代写博弈论作业

 

更多代写:商科作业代写  多邻国代考  设计作业代做  申请论文代写  申请文书代写  zoom监考作弊

合作平台:essay代写 论文代写 写手招聘 英国留学生代写 

 

天才代写-代写联系方式